Grapes could suffocate under drought and high temperatures

Zeyu Xiao1,5, Siyang Liao1,2, Victor Sadras1,2,3, Suzy Rogiers1,4,5 and Stephen Tyerman1,2

1ARC Training Centre for Innovative Wine Production, 2School of Agriculture, Food and Wine, The University of Adelaide, 3South Australian Research and Development Institute, 4NSW Department of Primary Industries, 5National Wine and Grape Industry Centre, Charles Sturt University

Background

Global temperatures and the frequencies of heatwaves and drought events are increasing due to climate change. This challenges the wine industry, since temperature and water are important factors affecting the growth and physiology of grapevines. Particularly, berry ripening under stress conditions could result in substantial loss of mass due to cell death within the berry and shrivel, which may negatively affect grape quality and lead to higher alcohol wines. We hypothesised that high temperatures may lead to oxygen deficiency (hypoxia) within grape berries due to the greater demand for oxygen by respiration, and also reduced oxygen diffusion within the berry due to water stress.

Objectives

1. Measure berry internal oxygen concentrations ([O$_2$]) in different grape cultivars.
2. Investigate association of berry internal [O$_2$] with berry cell death.
3. Test whether stressful conditions (heat and water stress) are linked to berry internal [O$_2$].

Key findings

1. Berry internal [O$_2$] of Chardonnay, Shiraz and Ruby Seedless, during berry ripening, was correlated with changes in berry cell death.
2. Close similarity between the pattern of cell death across the berry mesocarp and the [O$_2$] profile was observed (Fig. 1).
3. Lenticels are an important pathway for berry oxygen uptake (Fig. 2 & 3).
4. [O$_2$] increased towards the berry central axis (Fig. 1).
5. Water stress decreased Shiraz berry internal [O$_2$] (Fig. 5) and increased cell death.

Main methods

1. Berry internal [O$_2$] of seeded (Shiraz, Chardonnay) and seedless (Ruby Seedless) grapes was measured using oxygen micro-sensors.
2. Berry cell death was assessed using fluorescent diacetate (FDA) vital stain.
3. Micro CT was used to visualise the grape locule (Fig. 4).
4. A field trial was implemented to investigate the effect of heat and drought on Shiraz berry cell death and internal [O$_2$] in Nuriootpa (2014/2015 and 2015/2016).

Conclusion

The reduced berry internal oxygen concentration is related to the reduction in air space and percentage of living tissue. Cell death, and by implication berry shrivel, are strongly linked to oxygen supply and demand. This new knowledge on how grapes uptake oxygen provides the basis for further research into berry quality and cultivar selection for adapting viticulture to a warming climate.

Publications

