Introduction

Ethyl phenylacetate (EPhA) and phenylacetic acid (PhAA) may be chemical markers of sour rot infection & both compounds are the cause of the sweet, moldy honey-like, off-odour. Determining the concentration at which these compounds are detected in sparkling wine is important in helping wineries to establish 'tolerance' levels for the flavours. Threshold levels can provide a baseline target for remedial treatments aimed at reducing EPhA and PhAA to 'acceptable' levels.

![Chemical structures of Ethyl phenylacetate and Phenylacetic acid](image)

Figure 1. Diagram illustrating the impact of ethyl phenylacetate and phenylacetic acid on Pinot Noir sparkling wine flavour.

Aims

To determine the detection and rejection thresholds in Pinot Noir sparkling wine:
- For ethyl phenylacetate (EPhA only)
- For ethyl phenylacetate + phenylacetic acid (EPhA/PhAA)

Methods

- Six panelists carried out bench testing trials to establish the concentration ranges for the main study.
- Final concentration range (μg/L) = EPhA: 5 – 644.9; EPhA + PhAA: 5 – 25 – 644.9 + 3224.5.
- Formal testing conducted in the CCOVI sensory laboratory with 32 participants.
- Detection threshold testing: Forced choice ascending concentration series, method of limits (each triad = 2 base wines ‘blanks, 0’ and 1 base wine + added substance ‘target, +’). Five scale steps used at concentration factor of 3.37.
- Rejection threshold testing: Paired preference tests presented in ascending concentration series (each pair = 1 base wine ‘blank, 0’ and 1 base wine + added substance ‘target, +’). Five scale steps used at concentration factor of 3.37.

Table 1. Detection and consumer rejection thresholds for EPhA and PhAA.

<table>
<thead>
<tr>
<th>Compound/comboination</th>
<th>Detection threshold (DT)</th>
<th>DT results</th>
<th>Consumer rejection threshold (CRT)</th>
<th>CRT results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethyl phenylacetate (EPhA)</td>
<td>285.8 μg/L</td>
<td>21/31 (67.7%) of panelists’ BET were not verified per ASTM. Likely due to guessing or under estimation as threshold not reached.</td>
<td>604 μg/L</td>
<td>The group rejection threshold for EPhA can be concluded from the data set.</td>
</tr>
<tr>
<td>Ethyl phenylacetate (EPhA) + phenylacetic acid (PhAA)</td>
<td>261.0 μg/L / 1347.3 μg/L</td>
<td>Group DT cannot be concluded. 68% of individual thresholds were not determined via more than one consecutive target identification per ASTM protocol.</td>
<td>EPhA + PhAA = 95 μg/L / 509 μg/L</td>
<td>CRT cannot be concluded with confidence. Significance was not maintained as the concentration increased.</td>
</tr>
</tbody>
</table>

Conclusions

- EPhA consumer rejection threshold but not detection threshold determined.
- Consumer rejection threshold could not be determined for EPhA + PhAA combination by a consumer panel.
- The ranges of EPhA & PhAA present in sparkling wines is currently unknown.
- EPhA & PhAA will be investigated for the ability to act as biomarkers in sour rot prone grapes during ripening.
- Allowing panelists to re-do the tests until stable responses are achieved is recommended for threshold tests with sparkling wine.

Acknowledgements

With thanks to the Canadian Grapevine Certification Network (CGCN) and Ontario Grape & Wine Research Inc (OGWRI) for funding. The authors wish to thank Shufen Xu for HS-SPME-GC-MS analysis, the Sparkling Winos for the graphic design of sparkling wine bottles and Rodela Kaleci for drawing the chemical structures.