Population-wide diversity study in *Lachancea thermotolerans* highlights superior starters for winemaking

Ana Hranilovic¹,²,³, Paul Grbin¹,², Joanna Gambetta⁴, Leigh Schmidtke¹,⁴, Paul Boss¹,⁵, Adelaide Gallo⁶, Leo Duchemin⁷, Joana Coulon⁸, Isabelle Masneuf-Pomared⁵,⁹, Marina Bely³, Warren Albertin³,¹⁰, Vladimir Jiranek¹,²

¹The ARC Training Centre for Innovative Wine Production, AU; ²Department of Wine and Food Science, The University of Adelaide, AU; ³Unité de recherche Enologie, ISVV, University of Bordeaux, FR; ⁴National Wine and Grape Industry Centre, CSU, AU; ⁵CSIRO Agriculture and Food, AU; ⁶EMaVE, University of Turin, IT; ⁷IUT de Saint Brieuc, Saint Brieuc, FR; ⁸Biolaffort, Floirac, FR; ⁹Bordeaux Sciences Agro, FR; ¹⁰ENSCBP, Bordeaux INP, FR

*Lachancea thermotolerans* (LT) can partially ferment sugars to lactic acid, driving pH and ethanol decrease in wines. A genetic study revealed grouping of isolates based on their geographic origin or substrate of isolation (Hranilovic et al. 2017, PLOS ONE).

Characterisation of 94 strains in Chardonnay (236 g/L sugar, pH 3.5) confirmed a range different oenological performances of the strains (Hranilovic et al. 2018, Sci Rep). A subset of strains was further tested in mixed fermentations with *Saccharomyces cerevisiae* (SC) in Cabernet Sauvignon (236 g/L sugar, pH 3.7).

The modulations in ethanol content and pH in Cabernet Sauvignon highlighted the potential of certain strains to ameliorate wines from warm(ing) climates.