Yeast strain-dependent effects of glutathione addition on wine chemistry

Kathleen Cuijvers1, Ross Sanders2,3, Allie Kulcsar1, Marlize Bekker1, Dimitra Capone2,3, David Jeffery2,3, Simon Schmidt1

1 The Australian Wine Research Institute, PO Box 197, Glen Osmond (Adelaide) SA 5064, Australia, 2 Department of Wine and Food Science, University of Adelaide, PMB 1 Glen Osmond, SA 5064, Australia, 3 Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide

Corresponding author’s email: Simon.Schmidt@awri.com.au

Yeast strain-dependent effects of glutathione addition on wine chemistry

Background
Glutathione (GSH) is a naturally occurring antioxidant and can serve as a nitrogen source to many microorganisms. OIV guidelines state that the yeast assimilable nitrogen (YAN) level of musts should be sufficient to avoid the metabolism of GSH by yeast; however, no indication of what that concentration should be is provided.

Aims
1. To determine whether there is a YAN threshold sufficient to avoid GSH-related production of thiols with negative attributes.
2. To determine whether GSH-related thiol production is yeast strain-dependent (AWRI1688 and AWRI2861).
3. Assess whether GSH is a potential source of nitrogen.

Effect of nitrogen and GSH concentration on progress of fermentation by two different closely related yeast strains

A) AWRI 1688

B) AWRI 2861

Experimental design
Laboratory-scale ferments (200 mL) were initiated by inoculation with two genetically similar yeast strains, AWRI 1688 and AWRI 2861. Strain 1688 contains additional oligopeptide transporters but is otherwise genetically similar to 2861.

Chemically defined medium was used with the following treatments: three YAN concentrations: 156, 319, and 431 mg/L, and four GSH concentrations: 0, 20, 100 and 250 mg/L. Wine chemistry was assessed post-fermentation.

Conclusions
• The addition of GSH had no impact on the fermentation rate at any YAN concentration (Figures A and B).
• Decreases in GSH concentration during fermentation were evident at all YAN concentrations (Figure C).
• Hydrogen sulfide (H₂S) concentrations increased with increasing GSH concentrations at low YAN (Figure D). There was no relationship between end of ferment H₂S and GSH at higher YAN concentrations.
• Methylthioacetate (MeSAc) concentrations increased in response to GSH concentration at low YAN (figure E).
• At higher YAN concentrations total MeSAc concentration was strain-dependent.

Effect of GSH and nitrogen concentrations of post-ferment concentrations of GSH, H₂S and MeSAc

C) Glutathione

D) Hydrogen sulfide

E) Methylthioacetate

Reference
Resolution OIV-OENO 445-2015 addition of glutathione to must