Protein stabilisation of white wines using natural zeolites

Agnieszka Mierczynska-Vasilev1, Satriyo Wahono2, Paul Smith3, Keren Bindon1, Krasimir Vasilev2

1 The Australian Wine Research Institute, PO Box 197, Glen Osmond (Adelaide) SA 5064, Australia,
2 University of South Australia, Mawson Lakes SA 5095, PO Box 2471 Adelaide SA 5001,
3 Wine Australia, Industry House, National Wine Centre, Adelaide SA 5000, PO Box 2733, Kent Town SA 5071
Corresponding author’s email: agnieszka.mierczynska-vasilev@awri.com.au

BACKGROUND

- The use of bentonite fining in the global wine industry causes losses in the range of US$1 billion per year ($100M per year for Australia).
- Bentonite treatment is effective but has disadvantages:
 - loss of ~3 – 17% wine volume as lees
 - handling and waste disposal
 - environmental concerns
 - lack of specificity for protein.

AIMS

Develop an economically and technically feasible alternative to bentonite for removing haze proteins from wine.

RESULTS

- Thaumatin-like proteins (TLPs) and chitinases (CHI) before and after treatment with zeolite
- Effect of zeolite dose on protein concentration
- Semillon wine was fully stabilised by applying 4 g/L of zeolite, whereas Sauvignon Blanc and Chardonnay required 6 g/L dosage of zeolite.
- Compared to bentonites, zeolites cause much less wine loss, due to more compact lees, and they can be potentially reused as soil amendments in agriculture.
- The concentration of potassium in the wines decreased by more than 30% following treatment with natural zeolite. In contrast, the bentonite treatment did not result in any notable change in potassium levels.

TAKE-HOME MESSAGE

Natural zeolites can offer winemakers an alternative to the commonly used bentonite for haze protein removal from white wines.